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Non-universality of random walks in random environments 

Andrzej Majhofer and Marek Cieplakt 
Institute of Theoretical Physics, University of Warsaw, ul. Hoia 69, 00-681 Warszawa, 
Poland 

Received 21 March 1988 

Abstract. Random walks with random transition probabilities are studied for walks on the 
Euclidean and fractal lattices. The randomness is defined by selecting a preferred local 
direction and then by establishing a probability to violate this local instruction. Monte 
Carlo and decimation methods are used. Our results suggest that d = 2 is the upper critical 
dimensionality for this problem. For 1 < d < 2 the transport is subdiffusive and non- 
universal. For d < 2 no simple relation between the mean-square displacement and the 
probability of returning to the origin is found, in contrast to the ordinary random walk case. 

Recently, random walks with random transition probabilities, the so-called random 
walks in random environments or random-random walks, have been studied by, e.g., 
Alexander et a1 (1981), Derrida and Pomeau (1982), Luck (1983), Derrida and Luck 
(1983), Fisher (1984), Fisher et a1 (1985) and Honkonen et a1 (1987). The random- 
random walks are believed to be related to transport phenomena in disordered media 
and to vibrations of lattices with random force constants (see the review article of 
Alexander et a1 (1981)). There are some exact results, the existing ones concerning 
mainly the one-dimensional case. In this case, asymptotic formulae describing the 
mean-square displacement and other important characteristics are known for a wide 
class of transition probability distributions (Alexander et a1 1981, Derrida and Pomeau 
1982). Sinai (1982) proved a general theorem that if a probability p ( x )  to move to the 
right from any point x fulfils the condition 

( ln(p(x)))  = (141 -P(X))) (1) 
then, after time t ,  a particle will almost certainly cover a distance R -In' t .  This means 
that 

For higher lattice dimensionalities, results are scant. Within the renormalisation group 
method approach it has been argued that d = 1 and d = 2 are respectively the upper 
and lower critical dimensionalities in the random-random walk problem (Luck 1983, 
Derrida and Luck 1983, Fisher 1984, Fisher et a1 1985). It  means that, in the random- 
random walk case, classical scaling laws for the mean-square displacement are not 
modified for d > 2, there are logarithmic corrections for d = 2 and non-classical 
exponents for 1 < d < 2, while peculiar phenomena may occur at d = 1. Fisher (1984), 
Fisher et a1 (1985) and Honkonen et a1 (1987) also discussed possible forms of 
asymptotic formulae of ( R 2 (  t ) )  for d = 2. 
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Numerical simulations of Marinari et a1 (1983a, b)  and Banavar and Willemsen 
(1983) corroborated Sinai’s results in the d = 1 case. Marinari et al(1983b) investigated 
also the two-dimensional case. They studied models in which on each site the probabil- 
ity P , ( k )  to move to its ith nearest neighbour is given by 

f ‘ , ( k )  = Q : / Z ( k )  (3) 

where Q, are the random numbers uniformly distributed in (0, 1). Within the error 
bars their results for d = 2 are consistent with 

( R ’ (  t ) )  - t u  ( 5 )  

where the value of a depends on the form of the probability distribution function for 
the transition rates (i.e. on the value of k ) .  

In the case of ordinary random walks the probability to return to the origin and  
the mean-square displacement are related and  

Po( t )  - ( R 2 (  t ) ) - d ’ 2  (6) 

where d denotes lattice dimensionality which, in the case of a fractal lattice, corresponds 
to its fractal dimensionality df (Alexander and Orbach 1982, Rammal and Toulouse 
1982, Guyer 1984a, b).  

In this paper we discuss results of numerical simulations of random-random walks 
for d = 2 , 3  Euclidean lattices and  for the Sierpinski gasket of fractal dimensionality 
df= 1.5646.. . (see figure 1). We find that in the case of random-random walks (6) 
does not seem to hold and  the exponent a in ( 5 )  appears to be parameter dependent. 

1 1 1 

( U  1 l b )  ( C )  

Figure 1. The  first three steps of the Sierpinski gasket construction are  shown. 

A numerical realisation of a random-random walk may be defined in the following 
way. For each site of a lattice a direction pointing to one of its nearest neighbours 
(an ‘instruction’) is chosen randomly. A particle moves in this direction with probability 
1 - p  or in any other direction with probability p / ( z  - l) ,  where z is the coordination 
number. Thus by changing p ,  the probability to violate the instruction, it is possible 
to pass from completely deterministic ( p  = 0) to ordinary random walks ( p  = p o  = 
( z  - l ) / z ) .  For p < p o  the ‘instruction’ specifies a favourite direction of motion. In a 
numerical simulation, results have to be averaged over different walks and  different 
instruction sets corresponding to a preassigned p .  In a d = 1 case our model coincides 
with that of Marinari et af (1983a, b )  but differs for d > 1. Results of our  calculations 
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for Euclidean lattices of dimensionality two and three are shown in figures 2 ( a )  and 
2( 6) respectively. In the d = 3 case the asymptotic region of (R'(  t ) )  - r is reached for 
each value of p f  0, while in the d = 2  case some curvature persists in the plot of 
ln((R'(t))) against t .  This indicates that in the asymptotic region there exist non- 
algebraic corrections to the (R' (  t ) )  - t type of behaviour, suggesting d = 2 to be the 
upper critical dimensionality. In  the d = 2 case we observed no asymptotic relation 
of the type 

( 7 )  
predicted by Fisher (1984) for his version of the random-random walk. To further 
investigate this point we also made Monte Carlo simulations of random walks with 
step lengths randomly chosen from a Gaussian distribution. This model seemed to 
correspond better to the case considered by Fisher (1984) than the previous one. None 
of the formulae discussed by Fisher (1984) and  Fisher et a1 (1985) fits our data. Note, 
however, that these results were obtained for the weak disorder limit and  this condition 
is rather difficult to fulfil in our numerical model. 

Consider now the case of d < 2.  Figure 3 shows (RZ( t ) )  for the case of the Sierpinski 
gasket. The results are consistent with the power law asymptotic formula 

(8) 
The exponent CY appears to be p dependent, at least, within the 216 steps considered. 
When p = p o ,  this exponent becomes equal to 2 d , = 2 d f / d ,  ( d ,  denotes the spectral 

( R 2 (  t ) )  - t (  1 +4/ln( t ) )  

( R I (  1 ) )  - t e. 

t 

Figure 2. The mean-square displacement as a function of I (time = number of steps) for 
random-random walks on Euclidean lattices: A, p = 0.2; B, p = 0.1; C,  p = 0.01; D, p = 0.001, 
( a )  d = 2 case. Each point corresponds to an average of five runs of the Monte Carlo 
program. In each r u n  30 sets of instructions on a 500 x 500 lattice and 100 walks for every 
set were generated. (6) d = 3 case. Each point is an average of three runs of 3000 walks 
(30 instruction sets, 100 walks for each set). Instructions are generated on a 65 x 65 x 65 
lattice (periodic boundary conditions are assumed j .  The broken lines correspond to 
( R 2 ( i ) ) -  I type asymptotic behaviour. 
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Figure 3. The mean-square displacement as a function of t for the Sierpinski gasket. Each 
point is an average of five runs of 1000 walks. A, p = 0.75, a = 0.86; B, p = 0.25, a = 0.64; 
C, p = 0.125, a = 0.52; D, p = 0.0625, a = 0.44; E, p = 0.0315, a = 0.42; F, p = 0.008, a = 0.26. 
. . . , ( R 2 )  = t u .  

dimensionality) which corresponds to the standard random walk on this fractal lattice. 
For other values of p ,  a is less than the standard value. 

We now focus on the probability of returning to the origin. This characteristic is 
difficult to study by a direct Monte Carlo simulation technique since this would require 
an unreasonably large amount of computer time to accumulate reasonable statistics. 
However, for walks on a chain and on the Sierpinski gasket it is possible to use a 
length scale renormalisation method applied by Guyer (1984a, b)  to study ordinary 
random walks on fractals. In the short description of this method given below we 
concentrate only on a d = 1 case-the generalisation needed for the Sierpinski gasket 
is straightforward. 

Probabilities P(n, t )  for a particle to occupy site n at time t are described by 

where W n r l , n  = p  or 1 - p  and Vn = 1 .  If we apply the Laplace transformation to (9) 
assuming 

P(n, 0) = a n 0  (10) 

as an initial condition, we get 

sP(n,  s ) = S n O -  V , P ( n , s ) +  W , , + , , , P ( n + l , s ) +  W n - l , n P ( n - l ,  s )  ( 1 1 )  

where P( n, s) = I," e-"P( n, t )  dt. Equations for 9( n, s) with n odd are then substituted 
into equations with even n. Thus a new set of equations (connecting only the occupation 
probabilities for even n) with new effective transition rates 
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is obtained. Repetition of this procedure leads in the kth step to a set of equations 
for B( n, s )  with n = *2kl where I = 0, 1 ,2 ,3 , .  , , , In the case of the Sierpinski gasket 
each step consists of elimination of the innermost sites (sites '3' in  figure 1 for the 
gasket of this size). This again is equivalent to doubling of the length scale and to 
renormalising the transition rates. Since, with increasing number of steps, effective 
transition rates W ' k '  converge to zero while the average of V'&' converges to a constant 
V(m) we have 

(15) P(0,  s) = l / ( s +  V'"').  

Thus for each p and any set of instructions after a few steps only we get VI"' and 
hence B(0, s). 

Figures 4(a)  and ( 6 )  display V'"' (averaged over different sets of instructions) as 
a function of s for the d = 1 system and for the Sierpinski gasket respectively. For 
ordinary random walks Po( t )  and the mean-square displacement are related according 
to equation (6). If the same identity held for random-random walks then for large t 
we would have 

(16) P(O,  t )  = Po( t )  - ( R 2 ( r ) ) - " 2  - (In2 t ) - '  

in the I D  case and 

P(0 ,  1) = Po( t )  - t - a ' p ' d ' 2  

in the Sierpinski gasket case (assuming that ( R 2 ( f ) ) -  t" in this case). According to 
Tauberian theorems (see, e.g., the book by Doetsch (1950)) equations (16) and (17) 
are equivalent to 

P(O, s )  - l / ( s  In2 s )  or v ( ~ ) -  s In2 s (18) 

(19) 

for d = 1 and 
~ ( 0 ,  s) - S ~ ( ~ ) d 1 2 - I  or v ( m ) -  S 1 - a ( ~ i d 1 2  

for d = 1.5846,. . in the limit of small s. Both types of asymptotic behaviour are 
inconsistent with the results obtained using the decimation method for p # po (compare 
figures 4(a)  and ( b ) )  where the observed decrease of V(=' with decreasing s is much 
slower than described by (18) and (19). Note, for instance, that according to equation 
(19) V(%)  should change with s faster in the p = 0.008 case than in the p = 0.25 one 
(since (~(0.008) < (~(0.25))-cf figure 3) in contradiction to the results shown in figure 
4(b). Although we cannot exclude that in our calculations the asymptotic region is 
not reached we find this possibility rather unlikely. Therefore we conclude that in the 
random-random walk case Po( t )  and ( R 2 (  t ) )  are not related according to equation 
(6). This may indicate that there exist independent scaling laws for Po( t )  and ( R 2 ( t ) ) .  
On the other hand the evolution of V'")  and W'")  with the number of decimation steps 
are qualitatively similar in the I D  and the Sierpinski gasket case (examples of this 
evolution for random-random and ordinary random walks are shown in figures 5 ( a )  
and ( b ) .  

Our numerical simulations of the problem of random walks in random environments 
are consistent with the renormalisation group method results that for d > 2  there is 
the ordinary diffusive behaviour while for d < 2  a power law of the type ( R 2 ( t ) ) -  t u  
with non-universal value of (Y is observed. For the d = 2 case non-algebraic corrections 
to the ( R 2 ( t ) )  against t dependence are found although their form seems to be more 
complicated than suggested by Fisher (1984) and Fisher et a1 (1985) for the weak 
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Figure 4. V'"' as  a function of s for ( a )  a one-dimensional system; ( b )  the Sierpinski 
gasket. A, p = O . O O l ;  B, p = O . O 1 ;  C, p = O . l ;  D, p = O . 0 0 8 ;  E, p = O . O 6 2 5 ;  F, p = O . 2 5 ,  G, 
p = 0.75 .  
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Figure 5. Evolution of V ' " '  and  W ' " '  with the number of decimation steps n for ( a )  a 
one-dimensional system -, p = 0 . 2 ,  - - - p = 0.5; ( b )  the Sierpinski gasket - p = 0 . 2 5 ,  
_ _ -  p = 0.75. Each value of V and  W (zW is displayed, where z = 2 or 4 is the coordination 
number)  is averaged over all equivalent sites in a given decimation step.  Random-random 
walk (full  curve) and  ordinary random walk cases (broken curve) are  compared f o r s  = 0.001. 
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disorder limit. Furthermore our results indicate that there is no simple relation between 
P, ( t )  and the mean-square displacement in the random-random walk case. The 
existence of independent scaling laws for different characteristics is related to the fact 
that walks of the type discussed are characterised by an infinite number of critical 
exponents (Bunde 1987). 
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